

Robin Stocks: Python Trading on Wall St.

[image: _images/robin.jpg]
This library aims to create simple to use functions to interact with the
Robinhood API. This is a pure python interface and it requires Python 3. The purpose
of this library is to allow people to make their own robo-investors or to view
stock information in real time.

Note

These functions make real time calls to your Robinhood account. Unlike in the app, there are
no warnings when you are about to buy, sell, or cancel an order. It is up to YOU to use
these commands responsibly.

User Guide

Below is the table of contents for Robin Stocks. Use it to find example code or
to scroll through the list of all the callable functions.

	Introduction
	Philosophy

	License

	Installing
	Using Pip

	Get The Source Code

	Quick Start
	Importing and Logging In
	Basic

	With MFA entered programmatically from Time-based One-Time Password (TOTP)

	Building Profile and User Data

	Buying and Selling

	Finding Options

	Working With Orders

	Saving to CSV File

	Using Option Spreads

	Advanced Usage
	Making Custom Get and Post Requests

	Robinhood Functions
	Sending Requests to API

	Logging In and Out

	Loading Profiles

	Getting Stock Information

	Getting Option Information

	Getting Market Information

	Getting Positions and Account Information

	Placing and Cancelling Orders

	Getting Crypto Information

	Export Information

	TD Ameritrade Functions
	Sending Requests to API

	Logging In and Authentication

	Getting Stock Information

	Placing and Cancelling Orders

	Getting Account Information

	Getting Market Information

	Gemini Functions
	Sending Requests to API

	Logging In and Authentication

	Getting Crypto Information

	Placing and Cancelling Orders

	Getting Account Information

	Example Scripts

Indices and tables

	Index

	Module Index

	Search Page

Introduction

[image: _images/wolf.jpg]

Philosophy

I’ve written the code in accordance with what I consider the best coding practices.
Some of these are part of PEP 20 [https://www.python.org/dev/pep-0020] standards and some are my own. They are as follows:

	Explicit is better than implicit

When writing code for this project, you want other developers to be able to follow all function calls.
A lot of times in C++ it can be confusing when trying to figure out if a function is built-in, defined in the same file,
defined in another object, or an alias for another function. In Python, it’s a lot easier to see where a function comes from,
but care must still be taken to make code as readable as possible. This is the reason why my code uses import robin_stocks.module as module instead of from module import *.
This means that calls to a function from the module must be written as module.function instead of the simply
function. When viewing the code, it’s easy to see which functions come from which modules. However users do not have to
explicity call functions because of the following reason…

	Flat is better than nested

The __init__.py file contains an import of all the functions I want to be made public to the user. This allows
the user to call robin_stocks.function for all functions. Without the imports, the user would have to call
robin_stocks.module.function and be sure to use the correct module name every single time. This may seem contradictory
to the first standard, but the difference is that whereas I (the developer) must make explicit calls, for the end user it is
unnecessary.

	Three strikes and you refactor

If you find yourself copying and pasting the same code 3 or more times, then it means you should put that code in
its own function. As an example of this, I created the robin_stocks.helper.request_get() function, and then provided input parameters to
handle different use cases. This means that although functions I write may have very different logic for how they handle the get
requests from Robinhood, none of this logic is contained in the functions themselves. It’s all been abstracted away to a single function
which means the code is easier to debug, easier to propagate changes, and easier to read.

	Type is in the name

A person should be able to look at the code and know the purpose of all the names they see. For this reason
I have written names of functions as snake_case, the names of input parameters and local function variables as
camelCase, the names of class names and enum names as PascalCase, and the names of global
variables as UPPER_SNAKE_CASE.

In addition, the naming of each function is standardized in order to make searching for functions easier. Functions that load user account
information begin with “load”, functions that place orders begin with “order”, functions that cancel orders begin with “cancel”,
functions that query begin with “find”, and so on. If you are using a text editor/IDE with auto-complete (which I highly recommend!),
then this naming convention makes it even easier to find the function you want. As long as you know what you want the function to do,
then you know what word it starts with.

License

Copyright (c) 2018 Joshua M. Fernandes

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Installing

[image: _images/yacht.jpg]

Using Pip

This is the simplest method. To install Robin Stocks globally or inside a virtual environment,
open terminal and run the command:

$ pip install robin_stocks

Get The Source Code

If you prefer to install the source code directly, it can be found here [https://github.com/jmfernandes/robin_stocks],
or you can clone the repository using:

$ git clone https://github.com/jmfernandes/robin_stocks.git

Once the file has been downloaded or cloned, cd into the directory that contains the setup.py file and install using:

$ pip install .

Quick Start

[image: _images/robinyell.jpg]

Importing and Logging In

The first thing you will need to do is to import Robin Stocks by typing:

>>> import robin_stocks

robin_stocks will need to added as a preface to every function call in the form of robin_stocks.function.
If you don’t want to have to type robin_stocks at the beginning of every call,
then import Robin Stocks by typing

>>> from robin_stocks import *

Keep in mind that this method is not considered good practice as it obfuscates the distinction between Robin Stocks’
functions and other functions. For the rest of the documentation, I will assume that Robin Stocks was imported as import robin_stocks.

Once you have imported Robin Stocks, you will need to login in order to store an authentication token.

Basic

>>> import robin_stocks.robinhood as r
>>> login = r.login(<username>,<password>)

You will be prompted for your MFA token if you have MFA enabled and choose to do the above basic example.

With MFA entered programmatically from Time-based One-Time Password (TOTP)

NOTE: to use this feature, you will have to sign into your robinhood account and turn on two factor authentication.
Robinhood will ask you which two factor authorization app you want to use. Select “other”. Robinhood will present you with
an alphanumeric code. This code is what you will use for “My2factorAppHere” in the code below. Run the following code and put
the resulting MFA code into the prompt on your robinhood app.

>>> import pyotp
>>> totp = pyotp.TOTP("My2factorAppHere").now()
>>> print("Current OTP:", totp)

Once you have entered the above MFA code (the totp variable that is printed out) into your Robinhood account, it will give you a backup code.
Make sure you do not lose this code or you may be locked out of your account!!! You can also take the exact same “My2factorAppHere” from above
and enter it into your phone’s authentication app, such as Google Authenticator. This will cause the exact same MFA code to be generated on your phone
as well as your python code. This is important to do if you plan on being away from your computer and need to access your Robinhood account from your phone.

Now you should be able to login with the following code,

>>> import pyotp
>>> import robin_stocks.robinhood as r
>>> totp = pyotp.TOTP("My2factorAppHere").now()
>>> login = r.login('joshsmith@email.com','password', mfa_code=totp)

Not all of the functions contained in the module need the user to be authenticated. A lot of the functions
contained in the modules ‘stocks’ and ‘options’ do not require authentication, but it’s still good practice
to log into Robinhood at the start of each script.

Building Profile and User Data

The two most useful functions are build_holdings and build_user_profile. These condense information from several
functions into a single dictionary. If you wanted to view all your stock holdings then type:

>>> my_stocks = robin_stocks.build_holdings()
>>> for key,value in my_stocks.items():
>>> print(key,value)

Buying and Selling

Trading stocks, options, and crypto-currencies is one of the most powerful features of Robin Stocks. There is the ability to submit market orders, limit orders, and stop orders as long as
Robinhood supports it. Here is a list of possible trades you can make

>>> #Buy 10 shares of Apple at market price
>>> robin_stocks.order_buy_market('AAPL',10)
>>> #Sell half a Bitcoin is price reaches 10,000
>>> robin_stocks.order_sell_crypto_limit('BTC',0.5,10000)
>>> #Buy $500 worth of Bitcoin
>>> robin_stocks.order_buy_crypto_by_price('BTC',500)
>>> #Buy 5 $150 May 1st, 2020 SPY puts if the price per contract is $1.00. Good until cancelled.
>>> robin_stocks.order_buy_option_limit('open','debit',1.00,'SPY',5,'2020-05-01',150,'put','gtc')

Now let’s try a slightly more complex example. Let’s say you wanted to sell half your Tesla stock if it fell to 200.00.
To do this you would type

>>> positions_data = robin_stocks.get_current_positions()
>>> ## Note: This for loop adds the stock ticker to every order, since Robinhood
>>> ## does not provide that information in the stock orders.
>>> ## This process is very slow since it is making a GET request for each order.
>>> for item in positions_data:
>>> item['symbol'] = robin_stocks.get_symbol_by_url(item['instrument'])
>>> TSLAData = [item for item in positions_data if item['symbol'] == 'TSLA']
>>> sellQuantity = float(TSLAData['quantity'])//2.0
>>> robin_stocks.order_sell_limit('TSLA',sellQuantity,200.00)

Also be aware that all the order functions default to ‘gtc’ or ‘good until cancelled’. To change this, pass one of the following in as
the last parameter in the function: ‘gfd’(good for the day), ‘ioc’(immediate or cancel), or ‘opg’(execute at opening).

Finding Options

Manually clicking on stocks and viewing available options can be a chore. Especially, when you also want to view additional information like the greeks.
Robin Stocks gives you the ability to view all the options for a specific expiration date by typing

>>> optionData = robin_stocks.find_options_for_list_of_stocks_by_expiration_date(['fb','aapl','tsla','nflx'],
>>> expirationDate='2018-11-16',optionType='call')
>>> for item in optionData:
>>> print(' price -',item['strike_price'],' exp - ',item['expiration_date'],' symbol - ',
>>> item['chain_symbol'],' delta - ',item['delta'],' theta - ',item['theta'])

Working With Orders

You can also view all orders you have made. This includes filled orders, cancelled orders, and open orders.
Stocks, options, and cryptocurrencies are separated into three different locations.
For example, let’s say that you have some limit orders to buy and sell Bitcoin and those orders have yet to be filled.
If you want to cancel all your limit sells, you would type

>>> positions_data = robin_stocks.get_all_open_crypto_orders()
>>> ## Note: Again we are adding symbol to our list of orders because Robinhood
>>> ## does not include this with the order information.
>>> for item in positions_data:
>>> item['symbol'] = robin_stocks.get_crypto_quote_from_id(item['currency_pair_id'], 'symbol')
>>> btcOrders = [item for item in positions_data if item['symbol'] == 'BTCUSD' and item['side'] == 'sell']
>>> for item in btcOrders:
>>> robin_stocks.cancel_crypto_order(item['id'])

Saving to CSV File

Users can also export a list of all orders to a CSV file. There is a function for stocks and options. Each function
takes a directory path and an optional filename. If no filename is provided, a date stamped filename will be generated. The directory path
can be either absolute or relative. To save the file in the current directory, simply pass in “.” as the directory. Note that “.csv” is the only valid
file extension. If it is missing it will be added, and any other file extension will be automatically changed. Below are example calls.

>>> # let's say that I am running code from C:/Users/josh/documents/
>>> r.export_completed_stock_orders(".") # saves at C:/Users/josh/documents/stock_orders_Jun-28-2020.csv
>>> r.export_completed_option_orders("../", "toplevel") # save at C:/Users/josh/toplevel.csv

Using Option Spreads

When viewing a spread in the robinhood app, it incorrectly identifies both legs as either “buy” or “sell” when closing a position.
The “direction” has to reverse when you try to close a spread position.

I.e.
direction=”credit”
when
“action”:”sell”,”effect”:”close”

in the case of a long call or put spread.

Advanced Usage

[image: _images/veyron.jpg]

Making Custom Get and Post Requests

Robin Stocks depends on Requests which you are free to call and use yourself, or you could
use it within the Robin Stocks framework by using robin_stocks.helper.request_get(), robin_stocks.helper.request_post(),
robin_stocks.helper.request_document(), and robin_stocks.helper.request_delete(). For example, if you wanted to make your own
get request to the option instruments API endpoint in order to get all calls you would type:

>>> url = 'https://api.robinhood.com/options/instruments/'
>>> payload = { 'type' : 'call'}
>>> robin_stocks.request_get(url,'regular',payload)

Robinhood returns most data in the form:

{ 'previous' : None, 'results' : [], 'next' : None}

where ‘results’ is either a dictionary or a list of dictionaries. However, sometimes
Robinhood returns the data in a different format. To compensate for this, I added
the dataType parameter which defaults to return the entire dictionary listed above.
There are four possible values for dataType and their uses are:

>>> robin_stocks.robinhood.request_get(url,'regular') # For when you want
>>> # the whole dictionary
>>> # to view 'next' or
>>> # 'previous' values.
>>>
>>> robin_stocks.robinhood.request_get(url,'results') # For when results contains a
>>> # list or single dictionary.
>>>
>>> robin_stocks.robinhood.request_get(url,'pagination') # For when results contains a
>>> # list, but you also want to
>>> # append any information in
>>> # 'next' to the list.
>>>
>>> robin_stocks.robinhood.request_get(url,'indexzero') # For when results is a list
>>> # of only one entry.

Also keep in mind that the results from the Robinhood API have been decoded using .json().
There are instances where the user does not want to decode the results (such as retrieving documents), so
I added the robin_stocks.helper.request_document() function, which will always return the raw data,
so there is no dataType parameter. robin_stocks.helper.request_post() is similar in that it only
takes a url and payload parameter.

Robinhood Functions

Note

Even though the functions are written as robin_stocks.module.function, the module
name is unimportant when calling a function. Simply use robin_stocks.function for all functions.

Sending Requests to API

Logging In and Out

Loading Profiles

Getting Stock Information

Getting Option Information

Getting Market Information

Getting Positions and Account Information

Placing and Cancelling Orders

Getting Crypto Information

Export Information

TD Ameritrade Functions

Note

Even though the functions are written as robin_stocks.module.function, the module
name is unimportant when calling a function. Simply use robin_stocks.function for all functions.

Sending Requests to API

Logging In and Authentication

Getting Stock Information

Placing and Cancelling Orders

Getting Account Information

Getting Market Information

Gemini Functions

Note

Even though the functions are written as robin_stocks.module.function, the module
name is unimportant when calling a function. Simply use robin_stocks.function for all functions.

Sending Requests to API

Logging In and Authentication

Getting Crypto Information

Placing and Cancelling Orders

Getting Account Information

Example Scripts

[image: _images/two.jpg]
Example python scripts can be found at https://github.com/jmfernandes/robin_stocks [https://github.com/jmfernandes/robin_stocks/tree/master/examples]

Index

 _static/up.png

_static/pics/robin.jpg

_images/two.jpg

_static/pics/veyron.jpg

_images/veyron.jpg

_static/pics/wolf.jpg

_images/robin.jpg

_static/pics/robinyell.jpg

_images/robinyell.jpg

_static/pics/two.jpg

_static/ajax-loader.gif

_static/pics/gemini/final.png
Create API Key

APl KEY NAME

Give me a name [25]
API KEY

account- n " = == .

You will not see your API secret again so copy it to a safe place.
API SECRET (COPY TO A SAFE PLACE)
= .

API KEY SETTINGS

Auditor @

Fund Management (2]

v Trading Q .

Require session heartbeat — see APl docs

Yes, | have copied and pasted my API secret to a safe place and understand | will not be able to access it again.

CONFIRM Cancel

_static/pics/gemini/market.png
$ UsSD €, Transfer

joshua fernandes

M a r ket Settings

Balances

FAQ
<Top movers > <Top traded > < DeFi >

Legal

Log out

Cryptos Price 24hr Change % Change

Trust is Our Product™

For trademarks and patents, please
see our Legal Notice.

e Bitcoin $33,448.27 usp +$622.27 +1.90% LLESCAEF LR ES tails

BTC © Copyright 2021 Gemini Trust
Company, LLC.

ETtHher $1,309.88 usp +$1.11 +0.08% View details
a Bitcoin Cash $405.87 usp +$7.58 +1.90% View details
BCH
I|_.-|—|Cte(30|l'\ $128.93 usp +$1.13 +0.88% View details

S:Ka'““"k $22.05000 uso -$0.49030 -2.18% View details

a Zcash $85.24 usp -$0.31 -0.37% View details
ZEC
B BBAaTsm Attention Token $0.30297 uso -$0.00246 -0.81% View details

_images/wolf.jpg

_static/pics/yacht.jpg

_images/yacht.jpg

_static/pics/gemini/create.png
Back to Gemini Exchange $ USD €, Transfer

SETTINGS
Manage API keys associated with this account
PROFILE Create new API keys to be used for programmatic access, or view and manage existing keys in the table below. You may edit and delete keys in the table options menu.
Identity, Account, Verification Looking for API documentation?
CREATE A NEW API KEY
SECURITY

Keys, Email, Password, Phone

API KEYS
EXCHANGE
Interface, Notifications, Alerts Name Scope Permissions @ Key Created
Primary « Trading —
Master « Fund Manager —
FUNDING SOURCES i
Banks, Debit Cards + Trading
e Account Administration
APPROVED ADDRESSES
Manage Crypto Withdrawals
OAUTH2 APPLICATIONS
API CREATE A NEW OAUTH2 APPLICATION
Programmatic Access You'll be creating an API key and secret pair. The API secret is only visible during the creation process so copy it to a safe place.

Create new OAuth2 App —

USER MANAGEMENT
Manage Users, Roles

MY OAUTH2 APPLICATIONS

_static/comment-bright.png

_static/comment-close.png

_static/pics/gemini/settings.png
Back to Gemini Exchange $ USD €, Transfer

SETTINGS

View and edit your email and identification information

PROFILE View the identification information associated with this account. For security purposes, you may only change your identification information or close your account by

Identity, Account, Verification emailing Gemini customer service at Gemini Customer Support

SECURITY
Keys, Email, Password, Phone

YOUR PROFILE INFO

joshua fernandes (©) veriFien

EXCHANGE Date of Birth: — .

Interface, Notifications, Alerts
Home Address: -

N T e

FUNDING SOURCES
Banks, Debit Cards

ACCOUNT CLOSURE
Want to close your account? Please contact Gemini Customer Support.

APPROVED ADDRESSES
Manage Crypto Withdrawals

PERSONAL INFORMATION

Exercise your privacy rights

Programmatic Access

USER MANAGEMENT
Manage Users, Roles

_static/comment.png

_static/pics/tda/apps.png
1) My Apps -

AN v ‘ Search n

My Apps

These are your apps! Explore them!

robin
Products Details Edit "robin" Delete "robin"
robin’s Keys
. Consumer Key S, --m
Key Issued Thu, 01/28/2021 - 22:05
Expires Never

©® @ Privacy Policy | Terms of Use | Contact Us
. .

nav.xhtml

 Table of Contents

 		
 Robin Stocks: Python Trading on Wall St.

 		
 Introduction

 		
 Philosophy

 		
 License

 		
 Installing

 		
 Using Pip

 		
 Get The Source Code

 		
 Quick Start

 		
 Importing and Logging In

 		
 Basic

 		
 With MFA entered programmatically from Time-based One-Time Password (TOTP)

 		
 Building Profile and User Data

 		
 Buying and Selling

 		
 Finding Options

 		
 Working With Orders

 		
 Saving to CSV File

 		
 Using Option Spreads

 		
 Advanced Usage

 		
 Making Custom Get and Post Requests

 		
 Robinhood Functions

 		
 Sending Requests to API

 		
 Logging In and Out

 		
 Loading Profiles

 		
 Getting Stock Information

 		
 Getting Option Information

 		
 Getting Market Information

 		
 Getting Positions and Account Information

 		
 Placing and Cancelling Orders

 		
 Getting Crypto Information

 		
 Export Information

 		
 TD Ameritrade Functions

 		
 Sending Requests to API

 		
 Logging In and Authentication

 		
 Getting Stock Information

 		
 Placing and Cancelling Orders

 		
 Getting Account Information

 		
 Getting Market Information

 		
 Gemini Functions

 		
 Sending Requests to API

 		
 Logging In and Authentication

 		
 Getting Crypto Information

 		
 Placing and Cancelling Orders

 		
 Getting Account Information

 		
 Example Scripts

_static/pics/gemini/primary.png
Create API Key

You'll be creating an API key and secret pair. The API secret is only visible during the creation

process so copy it to a safe place.

SCOPE

Primary

An Account API Key can view account balances, trade, or transfer funds for your account.

CREATE A NEW API KEY

_static/pics/tda/url.png
Edit robin

App Name *

robin

Callback URL * ‘

https://127.0.0.1:8080

What is the purpose of your application? *

robin test app

« Save App

N

N

Close

_static/file.png

_static/down-pressed.png

_static/pics/tda/auth.png
E Ameritrade APIs Guides MyApps

Body Parameters

Name Values Description
ant B X i
gr: 'Jype authorization_cofE) The gr.ant .type of the oAuth scheme. Possible values are
(required) authorization_code, refresh_token
refresh_token Required if using refresh token grant

Setto offline to receive a refresh token on an
access_type authorization_code grant type request. Do not set to

offline on a refresh_token grant type request.

code - . N Required if trying to use authorization code grant
client_id
- — T icati
(required) . OAuth User ID of your application
redirect_uri https://127.0.0.1:€ Required if trying to use authorization code grant
Try itout !!

‘ SEND RESET

Request Response cURL

Make a request and see the response.

_static/down.png

_static/pics/tda/response.png
RESET

Request Response cURL

HTTP/1.1 200 OK

Access-Control-Allow-Headers: origin
Access-Control-Allow-Methods: GET

Access-Control-Allow-Origin: https://developer.tdameritrade.com
Access-Control-Max-Age: 3628800

Cache-Control: no-cache

Connection: keep-alive

Content-Length: 2272

Content-Security-Policy: frame-ancestors 'self'

Content-Type: application/json;charset=UTF-8

Date: Sun, 14 Feb 2021 18:20:21 GMT

Set-Cookie: ADRUM_BTa="R -, Version=1; Max-
Age=30; Expires=Sun

Strict-Transport-Security: max-age=31536000; includeSubDomains
X-Application-Context: OAUTH_SERVICE:run:8080
X-Content-Type-Options: nosniff

X-Frame-Options: SAMEORIGIN

X-Xss-Protection: 1; mode=block

{
"access_token"

: "PlaceTrades AccountAccess MoveMoney",
"expires_in": 1800,
"refresh_token_expires_in": 7776000,
"token_type": "Bearer"

}

_static/minus.png

_static/plus.png

_static/up-pressed.png

